Виды геометрических моделей, их свойства, параметризация моделей. Виды геометрических моделей Введение в трехмерное моделирование

Моделирование – один из основных методов познания, который заключается в выделении из сложного явления (объекта) некоторых частей и замещении их другими объектами, более понятными и удобными для описания, объяснения и разработки.

Модель – реальный физический объект или процесс, теоретическое построение, упорядоченный набор данных, которые отражают некоторые элементы или свойства изучаемого объекта или явления, существенные с точки зрения моделирования.

Математическая модель – модель объекта, процесса или явления, представляющая собой математические закономерности, с помощью которых описаны основные характеристики моделируемого объекта, процесса или явления.

Геометрическое моделирование – раздел математического моделирования – позволяет решать разнообразные задачи в двумерном, трехмерном и, в общем случае, в многомерном пространстве.

Геометрическая модель включает в себя системы уравнений и алгоритмы их реализации. Математической основой построения модели являются уравнения, описывающие форму и движение объектов. Все многообразие геометрических объектов является комбинацией различных примитивов – простейших фигур, которые в свою очередь состоят из графических элементов - точек, линий и поверхностей.

В настоящее время геометрическое моделирование успешно используется в управлении и других областях человеческой деятельности. Можно выделить две основные области применения геометрического моделирования: проектирование и научные исследования.


Геометрическое моделирование может использоваться при анализе числовых данных. В таких случаях исходным числовым данным ставится в соответствие некоторая геометрическая интерпретация, которая затем анализируется, а результаты анализа истолковываются в понятиях исходных данных.

Этапы геометрического моделирования :

● постановка геометрической задачи, соответствующая исходной прикладной задаче или ее части;

● разработка геометрического алгоритма решения поставленной задачи;

● реализация алгоритма при помощи инструментальных средств;

● анализ и интерпретация полученных результатов.

Методы геометрического моделирования :

● аналитический;

● графический;

● графический, с использованием средств машинной графики;

● графоаналитические методы.

Графоаналитические методы основываются на разделах вычислительной геометрии, таких как теория R-функций, теория поверхностей Кунса, теория кривых Безье, теория сплайнов и др.

Для современных научных исследований характерно использование, наряду с двумерными и трехмерными, многомерных геометрических моделей (физика элементарных частиц, ядерная физика и т. д.).

Системы координат

Система координат (СК) – совокупность базисных (линейно независимых) векторов и единиц измерения расстояния вдоль этих векторов (e 1, e 2, …, en ).

Если базисные вектора нормированы (единичной длины) и взаимно ортогональны, то такая СК называется декартовой (ДСК).

Мировая система координат (МСК) xyz – содержит точку отсчета (начало координат) и линейно независимый базис, благодаря которым становится возможным цифровое описание геометрических свойств любого графического объекта в абсолютных единицах.

Экранная система координат (ЭСК) x эy эz э. В ней задается положение проекций геометрических объектов на экране дисплея. Проекция точки в ЭСК имеет координату z э = 0. Тем не менее, не следует отбрасывать эту координату, поскольку МСК и ЭСК часто выбираются совпадающими, а, вектор проекции [x э, y э, 0] может участвовать в преобразованиях, где нужны не две, а три координаты.

Система координат сцены (СКС) x сy сz с – описывает положение всех объектов сцены - некоторой части мирового пространства с собственным началом отсчета и базисом, которые используются для описания положения объектов независимо от МСК.

Объектная система координат (ОСК) x оy оz о – связана с конкретным объектом и совершает с ним все движения в СКС или МСК.


В трехмерном пространстве (R3):

ортогональная декартова СК (x , y , z );

цилиндрическая СК (ρ, y , φ);

сферическая СК (r , φ, ω).

Соотношение между декартовой СК и цилиндрической СК :



Соотношение между декартовой СК и сферической СК :

Соотношение между цилиндрической СК и сферической СК :

Аффинные преобразования

Аффинным называется преобразование, обладающее следующими свойствами :

● любое аффинное преобразование может быть представлено как последовательность операций из числа простейших: сдвиг, растяжение/сжатие, поворот;

● сохраняются прямые линии, параллельность прямых, отношение длин отрезков, лежащих на одной прямой, и отношение площадей фигур.

Аффинные преобразования координат на плоскости :

(x , y ) – двумерная система координат,

(X , Y ) – координаты старой СК в новой системе координат.



Обратное преобразование:

2. Растяжение/сжатие осей:

Обратное преобразование


Обратное преобразование – поворот системы (X ,Y ) на угол (-α):

Аффинные преобразования объектов на плоскости .

x , y – старые координаты точки, X , Y – новые координаты точки.



Сдвиг:

Обратное преобразование:

Масштабирование объекта:

Обратное преобразование:


3. Поворот вокруг центра координат:



Обратное преобразование:


Лекция 8

Геометрические модели плоских объектов

Основные понятия

Положение точки в пространстве Rn (n -мерном пространстве) задается радиус-вектором p = [p 1, p 2,, pn ], имеющим n координат p 1, p 2,, pn и разложение по n линейно-независимым базисным векторам e 1, e 2,, en :

https://pandia.ru/text/78/331/images/image019_47.gif" width="277" height="59">

Линия на плоскости может быть задана с помощью уравнения в неявной форме:

(НФ) f (x ,y )= 0;

или в параметрической форме:

(ПФ) p (t )= [x (t ), y (t )].

В любой регулярной (гладкой и некратной) точке на линии p 0= [x 0, y 0]= p (t 0) возможна линеаризация кривой, т. е. проведение к ней касательной прямой, уравнения которой имеют вид

(НФ) Nx (x - x 0) + Ny (y - y 0) = 0 или N (p - p 0) = 0,

(ПФ) x (t ) = x 0 + Vx t , y (t )= y 0 + Vy t или p (t ) = p 0 + Vt .

Вектор нормали N = [Nx , Ny ] ортогонален линии и направлен в ту сторону, где f (p )> 0.

Направляющий вектор линии V = [Vx , Vy ] начинается в точке p 0 и направлен по касательной к p (t ) в сторону увеличения t .

Векторы N и V ортогональны, т. е. N V = 0 или NxVx + NyVy = 0.

Связь вектора нормали и направляющего вектора:

N =[Vy , - Vx ], V =[-Ny , Nx ]

Способы описания (модели) прямой линии

Неявное уравнение прямой задается тремя коэффициентами A , B и D , составляющими вектор F = [A , B , D ]:

(НФ): Ax + By + D =0.

Хотя бы одно из чисел A или B должно быть ненулевым.

Если оба коэффициента ненулевые (A ≠0 и B ≠0), то прямая проходит наклонно к осям координат и пересекается с ними в точках (-D / A , 0) и (0, - D / B ).

При A =0, B ≠0 уравнение By + D =0 описывает горизонтальную прямую y = – D / B .

При A ≠0, B = 0 уравнение Ax + D =0 описывает вертикальную прямую x = – D / A .

Прямая проходит через начало координат: f (0,0)=0 при D =0.

Благодаря свойству прямой разделять плоскость на две полуплоскости с противоположными знаками, неявное уравнение позволяет определять положение точки (точек) на плоскости относительно прямой:

1) точка q лежит на прямой, если f (q )=0;

2) точки a и b лежат по одну сторону от прямой, если f (a )f (b )>0;

3) точки a и b лежат по разные стороны от прямой, если f (a )f (b )<0.

Для построения прямой по неявному уравнению необходимо и достаточно иметь либо две несовпадающие точки p 0 и p 1, через которые она проходит, либо точку p 0 и направляющий вектор V , с помощью которого вторая точка p 1 вычисляется как p 1= p 0+ V .

Из неявного уравнения прямой N = [A , B ] Þ V = [- B , A ].

Нормальное уравнение прямой – прямая описывается с помощью точки p 0 и вектора нормали N и выводится из условия ортогональности векторов N и (p - p 0) для всех точек p , принадлежащих прямой f (p )= N ◦(p - p 0).

Неявная функция позволяет оценить положение точки p относительно вектора нормали прямой:

● при f (a )>0 точка a лежит в том же полупространстве, куда направлена нормаль, а угол Ð (a - p 0, N ) острый;

● при f (b )<0 угол Ð (b - p 0, N ) тупой, а точка b и нормаль находятся по разные стороны от прямой.

Параметрическая функция прямой p (t )= p 0+ Vt , где
V = [- Ny , Nx ] удобна для задания и построения частей прямой – отрезков и лучей. Для этого необходимо указать пределы изменения параметра t :

● бесконечный интервал -¥<t <¥ не ограничивает протяженность бесконечной прямой;

● при t ³0 получается луч, выходящий из точки p 0 в бесконечность в направлении вектора V ;

● конечный интервал t 0≤t t 1 определяет отрезок прямой между точками p 0+ Vt 0 и p 0+ Vt 1.

Благодаря левой ориентации направляющего вектора V относительно вектора нормали N эквивалентная нормальной форме функция

https://pandia.ru/text/78/331/images/image030_34.gif" width="309" height="47 src=">

Изменение параметра пучка в интервале 0≤λ≤1 дает такие промежуточные прямые, что вращение происходит по кратчайшим углам.

Уравнение биссектрисы угла между двумя прямыми получается при λ=0,5, если | N 1|=| N 2| или | V 1|=| V 2|. В результате параметры биссектрисы можно найти по формулам

F бис=| N 2| F 1+| N 1| F 2, p бис(t )= q + V бисt , V бис=| V 2| V 1+| V 1| V 2.

Расчет биссектрис бывает необходим, например, при построении окружности, вписанной в треугольник. Как известно, ее центр лежит в точке пересечения биссектрис внутренних углов этого треугольника. При построении биссектрисы внутреннего угла следует учитывать направления подставляемых в формулу векторов сторон треугольника: они должны либо оба выходить из вершины, либо оба входить в нее. При несоблюдении этого правила по указанной формуле будет проведена биссектриса дополнительного угла треугольника, а окружность окажется вневписанной.

Это модели, которые с определённой точностью описывают геометрические свойства проектируемого объекта. Геометрические свойства – это пространственное отношение и формы (фигуры). В геометрии понятие пространство и фигуры определяется исходя из понятия множества. Пространство определяется как множество каких-либо элементов (точек), а фигура определяется как произвольное множество точек в данном пространстве.

В САПР используется математическое представление геометрической модели. Наука, которая занимается этим – инженерная (прикладная) геометрия. При геометрическом моделировании объект проектирования предстаёт как геометрический объект (ГО). Для любого геометрического объекта можно определить совокупность независимых условий, однозначно задающих этот объект, то есть позволяющие для любой точки пространства установить, принадлежит эта точка объекту или нет. Такую совокупность независимых условий называют определителем геометрического объекта. В число условий входят геометрические фигуры (точки, линии, поверхности,) и определённая последовательность действий, посредством которых из этих геометрических фигур можно построить данный геометрический объект. Эта последовательность действий называется алгоритмом воспроизведения данного геометрического объекта.

Количественно геометрический объект характеризуется параметрами . При выделении параметров важно учитывать области их существования, например, для треугольника числа, выражающие длины сторон, всегда больше нуля и сумма двух чисел больше третьего числа.

Для описания геометрической фигуры необходимо выделить параметры двух типов – формы и положения . Параметры формы характеризуют размеры и форму геометрической фигуры, они не изменяются при изменении положения фигуры в пространстве; параметры положения характеризуют положение геометрической фигуры в пространстве. Параметризация формы производится в системе координат, которая связана с самой фигурой и перемещается вместе с ней. Параметризация положения фигуры производится в системе координат независимо от фигуры.

При описании геометрического объекта различают подмножества граничных точек – поверхность геометрического объекта ; и подмножество внутренних точек – тело геометрического объекта .

Геометрические объекты бывают сложной формы и сложной структуры. Геометрические объекты сложной формы – это те, у которых поверхность сложного характера (например, корпус судна, автомобиля). Геометрические объекты сложной структуры – состоящие из нескольких ГО.

В автоматизированном проектировании известны два основных подхода к геометрическому модулированию:

Первый подход состоит в том, что выделяется некоторый набор геометрических фигур, которые в данном классе задач считаются элементарными (базовыми). Наряду с геометрическим набором вводится набор действий – геометрических операций над этим набором. Геометрический объект в этом случае называется составным (конструктивным).

Второй подход непосредственное описание и воспроизведение геометрических свойств объекта без использования вспомогательных, заранее заготовленных фиксированных фигур. В этом случае непосредственно описывается закон образования геометрического объекта как множество точек, обладающих соответствующими свойствами.

Подход, основанный на «прямом» моделировании геометрического объекта, в зависимости от способа формирования можно разделить на кусочно-аналитические и алгебро-логические модели объекта .

В кусочно-аналитических моделях поверхность объекта представляется отдельными кусками гладких поверхностей, называемыми гранями. Каждая грань задаётся своим уравнением поверхности и границами грани. Рёбра геометрического объекта или границы грани есть линии пересечения поверхностей, ограничивающие геометрический объект. Точки пересечения рёбер называются вершинами .

Существует три вида моделей: стержневая, оболочная и объемная.

Стержневая модель геометрического объекта позволяет весьма просто дать форму изображения проектируемого объекта путём построения проволочно-каркасной модели геометрического объекта. В такой модели описываются только рёбра и вершины геометрического объекта, грани не описываются (рис.1а).Ребра представлены в виде стержней, соединенных в узлах (вершинах 1,2,3....). Основными уравнениями для описания такой модели являются уравнения прямой линии в трехмерном пространстве. Такая модель является подмоделью, но она позволяет оперативно осуществлять вывод изображения геометрического объекта, а также выполнять такие операции, как построение аксонометрических и перспективных проекций.


Математическое описание моделей такого рода сравнительно простое, что обуславливает высокое быстродействие программного обеспечение. К недостаткам таких моделей следует отнести сложность или невозможность представления внутреннего облика объекта, построения произвольных его разрезов и сечений.

Геометрические модели объекта

а – стержневая; б - оболочечная

Оболочечная модель объекта (рис.1б) , основана на представлении внешнего облика объекта в виде совокупности поверхностей, являющихся гранями модели (А, Б, В...). Линии пересечения поверхностей образуют ребра модели.

Такая модель описывается системой уравнений поверхностей и может быть использована для моделирования внешнего облика объектов любой формы. Основной ее недостаток невозможность представления внутреннего облика объекта, построение его разрезов и сечений.


Наиболее современной моделью, нашедшее широкое применение в САПР, является объемная (твердотелая модель). Общепринятым порядком моделирования твердого тела является последовательность выполнения булевых операций (объединение, вычитание и пересечение) над объемными элементами (сферы, призмы, цилиндры, конусы, пирамиды и т.д.). Эти элементы описываются теми же уравнениями, что и поверхности оболочечной модели, однако объемные элементы считаются заполненными. Пример выполнения операций с объемными элементами показан на рис.2.

Рис.2. Операции с объемными элементами

Для решения задач комплексной автоматизации машиностроительных производств необходимо построить информационные модели изделий. Машиностроительное изделие как материальный предмет должен быть описан в двух аспектах:

Как геометрический объект;

Как реальное физическое тело.

Геометрическая модель необходима для задания идеальной формы, которой должно было бы соответствовать изделие, а модель физического тела должна дать характеристику материала, из которого изготовляется изделие, и допустимые отклонения реальных изделий от идеальной формы.

Геометрические модели создаются с помощью программных средств геометрического моделирования, а модели физического тела с помощью средств создания и ведения баз данных.

Геометрическая модель, как разновидность модели математической, охватывает определенный класс абстрактных геометрических объектов и отношений между ними. Математическое отношение - это правило, связывающее абстрактные объекты. Они описываются с помощью математических операций, связывающих один (унарная операция), два (бинарная операция) или более объектов, называемых операндами, с другим объектом или множеством объектов (результатом операции).

Геометрические модели создаются, как правило, в правой прямоугольной системе координат. Эти же системы координат используются в качестве локальных при задании и параметризации геометрических объектов.

В табл.2.1 приведена классификация базовых геометрических объектов. По размерности параметрических моделей, необходимых для представления геометрических объектов, они делятся на нульмерные, одномерные, двумерные и трехмерные. Нульмерные и одномерные классы геометрических объектов могут моделироваться как в двух координатах(2D) на плоскости, так и в трех координатах(3D) в пространстве. Двумерные и трехмерные объекты могут моделироваться только в пространстве.

Язык СПРУТ для геометрического моделирования машиностроительных изделий и оформления графической и текстовой документации

Существует значительное количество систем компьютерного геометрического моделирования, наиболее известными из которых являются Auto- CAD, ANVILL, EUCLID, EMS и др. Из числа отечественных систем этого класса наиболее мощной является система СПРУТ, предназначенная для автоматизации конструирования и подготовки управляющих программ для станков с ЧПУ.

Нульмерные геометрические объекты

На плоскости

Точка на плоскости

Точка на линии

Точка, заданная одной из координат и лежащая на прямой

В пространстве

Точка в пространстве

Точка, заданная координатами в базовой системе

P3D i = Xx,Yy,Zz

Точка на линии

Точка, заданная как n-я точка пространственной кривой

P3D i = PNT,CC j,Nn

Точка на поверхности

Точка, заданная как точка пересечения трех плоскостей;

P3D i = PLs i1,PLs i2,PLs i3

Таблица 2.1 Геометрические объекты в среде спрут

Размер-ность объекта

Размерность пространства

Вид объекта

Оператор СПРУТ

На плоскости(2D)

Точки на плоскости

Pi = Xx, Yy; Pi = Mm, Aa

[подсистема SGR]

Точки на линии

Pi = Xx, Li; Pi = Ci, Aa

В пространстве(3D)

Точки в пространстве

P3D i = Xx,Yy, Zz

[подсистема GM3]

Точки на линии

P3D i = PNT,CC j,Nn

Точки на поверхности

P3D i = PLS i1,PLS i2,PLS i3

На плоскости(2D)

[подсистема SGR]

Окружности

Ki = Pj, -Lk, N2, R20, Cp, Pq

Ki = Mm, Lt, Pj, Pk,..., Pn, Cq

Кривые 2-го порядка

CONIC i = P i1, P i2, P i3, ds

В пространстве(3D) [подсистема GM3]

P3D i = NORMAL,CYL j,P3D k; P3D i = NORMAL,Cn j,P3D k; P3D i = NORMAL,HSP j,P3D k; P3D i = NORMAL,TOR j,P3D k

L3D i = P3D j,P3D k

CC i = SPLINE,P3D i1,...,P3D j,Mm

Параметрическая кривая на поверхности

CC n = PARALL, BASES=CCi, DRIVES=CCk, PROFILE=CCp, STEPs

Линии пересечения поверхностей

SLICE K i, SS j, Nk, PL l;

INTERS SS i, SS j, {L,} LISTCURV k

Проекция линии на поверхность

PROJEC Ki, CC j, PLS m

Проволочные модели

SHOW CYL i; SHOW HSP i; SHOW CN i; SHOW TOR i

Двух -мерные

В пространстве [подсистема GM3]

Плоскости

PL i = P3D j,L3D k

Цилиндры

CYL i = P3D j,P3D k,R

CN i = P3D j,R1,P3D k,R2;

CN i = P3D j,R1,P3D k,Angle

HSP i = P3D j,P3D k,R

TOR i = P3D j,R1,P3D k,R1,R2

Поверхности вращения

SS i = RADIAL, BASES = CC j, DRIVES = CC k, STEP s

Линейчатые поверхности

SS i = CONNEC, BASES = CC j, BASES = CC k, STEP s

Фасонные поверхности

SS i = PARALL, BASES = CC j, DRIVES = CC k, STEP s

Поверхности тензорного произведения

Трех-мерные

В пространстве [подсистема SGM]

Тело вращения

SOLID(dsn) = ROT, P3D(1), P3D(2), SET, P10, m(Tlr)

Тело сдвига

SOLID(dsn) = TRANS, P3D(1), P3D(2), SET, P10, M(Tlr)

Тело цилиндрическое

SOLID(dsn) = CYL(1), M(Tlr)

Тело коническое

SOLID(dsn) = CN(1), M(Tlr)

Тело сферическое

SOLID(dsn) = SPHERE(1), M(Tlr)

Тело торическое

SOLID(dsn) = TOR(1), M(Tlr)

Одномерные геометрические объекты

На плоскости

Векторы Вектор переноса MATRi = TRANS x, y

Линии Простые аналитические

Прямая (всего 10 способов задания)

Прямая, проходящая через две заданные точки Li = Pi, Pk

Окружность (всего 14 способов задания)

Окружность, заданная центром и радиусом Ci = Xx, Yy, Rr

Кривая второго порядка (всего 15 способов задания)

Кривая второго порядка, проходящая через три точки с заданным дискриминантом Conic i = P i1, P i2, P i3, ds

Составные Контуры - последовательность сегментов плоских геометрических элементов, начинающихся и заканчивающихся точками, лежащими на первом и последнем элементе соответственно K23 = P1, -L2, N2, R20, C7, P2 Кусочно-полиномиальные

Сплайн. Первым параметром в операторе является идентификатор "M", который указывает величину отклонения при аппроксимации отрезками сплайн-кривой. Далее следует начальное условие (прямая или окружность), затем перечисление точек в той последовательности, в которой они должны быть соединены. Заканчивается оператор определением условия на конце сплайн-кривой(прямая или окружность) Ki = Mm, Lt, Pj, Pk,..., Pn, Cq

Аппроксимация дугами Ki = Lt, Pj, Pk,..., Pn

В пространстве Векторы Вектор направления

Вектор единичной нормали в точке к полусфере P3D i = NORMAL,HSP j,P3D k Вектор единичной нормали в точке к цилиндру P3D i = NORMAL,CYL j,P3D k Вектор единичной нормали в точке к конусу P3D i = NORMAL, Cn j,P3D k Вектор единичной нормали в точке к тору P3D i = NORMAL,TOR j,P3D k Вектор переноса MATRi = TRANS x, y, z Линии

Независимые Прямая (всего 6 способов задания)

По двум точкам L3D i = P3D j,P3D k Сплайн-кривая CC i = SPLINE,P3D i1,.....,P3D j,mM На поверхности Параметрическая CC n=PARALL,BASES=CCi,DRIVES=CCk,PROFILE=CCp,STEPs Пересечение 2-х поверхностей Контур сечения поверхности плоскостью SLICE K i, SS j, Nk, PL l где N k - номер сечения Линия пересечения 2-х криволинейных поверхностей (результат список пространственных кривых) INTERS SS i,SS j,L,LISTCURV k ; где L - уровень точности; 3<= L <= 9;

Проекции на поверхность Проекция пространственной кривой на плоскость с системой координат PROJEC Ki,CC j,PLS m.

Составная

Проволочные модели Каркас Отображение цилиндра на экране в виде проволочной модели SHOW CYL i Отображение полусферы на экране в виде проволочной модели SHOW HSP i

Отображение конуса на экране в виде проволочной модели SHOW CN i

Отображение тора на экране в виде проволочной модели SHOW TOR

Двумерные геометрические объекты (поверхности)

Простые аналитические Плоскость (всего 9 способов задания)

По точке и прямой PL i = P3D j,L3D k

Цилиндр(по двум точкам и радиусу) CYL i = P3D j,P3D k,R

Конус Задается по двум точкам и двум радиусам; или по двум точкам, радиусу и углу в вершине CN i = P3D j,R1,P3D k,R2; CN i = P3D j,R1,P3D k,Angle

Сфера (полусфера) Задается по двум точкам и радиусу HSP i = P3D j,P3D k,R

Тор Задается по двум точкам и двум радиусам; вторая точка вместе с первой определяет ось тора TOR i = P3D j,R1,P3D k,R1,R2

Составные Кинематические Поверхности вращения SS i = RADIAL, BASES = CC j, DRIVES = CC k, STEP s

Линейчатые поверхности SS i = CONNEC, BASES = CC j, BASES = CC k, STEP s

Фасонные поверхности SS i = PARALL, BASES = CC j, DRIVES = CC k, STEP s

Кусочно-полиномиальные Поверхности тензорного произведения (сплайновые поверхности по системе точек) CSS j = SS i

Таблица 2.2 Геометрические операции в среде спрут

ОПЕРАТОР СПРУТ

Преобразо вания

Масштабирова-ние

MATRi = TRANS x, y, z

Вращение

MATRi = ROT, X Y Z, Aa

Отображение

MATRi = SYMMETRY, Pli

Проекции

Параллельные

VECTOR P3Di, INTO P3Dj

L = SURFAREA

параметров

S = SURFAREA

S = SURFAREA

S = AREA

VS = VOLUME

Момент инерции

SURFAREA

SURFAREA

INERC SOLID i,L3d i1,INLN

INERC SOLID i, P3Dj

Центр масс

CENTRE SOLID i,P3D j

SURFAREA

БИНАР-НЫЕ

Расчеты параметров

Расстояние

S = DIST P3Di, P3Dj

S = DIST P3Di, L3Dj

S = DIST P3Di, Pl j

S = DIST P3Di, SS j

S = DIST P3Di, P3Dj

Ang = SURFAREA

Пересечение

Двух линий

Pi = Li, Lj; Pi = Li, Cj;

Pi = Ki, Lt, Nn; Pi = Ki, Ct, Nn;

Pi = Ki, Kt, Nn; Pi = Ki, Lt, Nn

P3D i = L3D j,PL k

поверхностью

P3D i = L3D j,HSP k,n

P3D i = L3D j,CYL k,n

P3D i =L3D j,CN k,n; P3D i =CC i ,PL j

L3D i = PL j, PL k

поверхностей

INTERS SS i,SS j,{L,}LISTCURV k

CROS SOLID(Top+2), RGT, SOLID(Top+3), RGT;

Вычитание

Тела из тела

CROS SOLID(Top+2), RGT, SOLID(Top+3);

SOLID(Top+1) = SOLID(Top+2), SOLID(Top+3)

Сложение

CROS SOLID(Top+2), SOLID(Top+3);

SOLID(Top+1) = SOLID(Top+2), SOLID(Top+3)

Отсечение

Тела плоскостью

CROS SOLID(Top+1), PL(1), SET

Объединение

Двух поверхностей

SSi=ADDUP,SSk,SSj,STEPs,a Angl

Объединение

Объединение поверхностей

SS i = ADDUP,SS k,....., SS j,STEP s ,a Angl

Способы представления и передачи информации о геометрической форме изделия

Исходные данные о геометрической форме изделия, могут поступать в САМ-систему в формате Boundary Representation (B-Rep). Изучим этот формат более подробно.

Автором были рассмотрены структуры данных геометрического ядра ACIS фирмы Spatial Technology, геометрического ядра Parasolid фирмы Unigraphics Solutions, геометрического ядра Cascade фирмы Matra Datavision и представление модели в спецификации IGES. Во всех четырех источниках представление модели очень схоже, имеются лишь небольшие отличия в терминологии, в ядре ACIS имеются непринципиальные структуры данных связанные с оптимизацией вычислительных алгоритмов. Минимальный список объектов, необходимый для представления B-Rep модели представлен на Рис. 1. Его можно разделить на две группы. В левом столбце представлены геометрические объекты, а в правом топологические.

Рис. 1. Геометрические и топологические объекты.

Геометрическими объектами являются поверхность (Surface), кривая (Curve) и точка (Point). Они самостоятельны и не ссылаются на другие составляющие модели, именно они определяют пространственное расположение и размеры геометрической модели.

Топологические объекты описывают то, каким образом геометрические соединяются в пространстве. Сама по себе топология описывает структуру или сетку, которая никоим образом не зафиксирована в пространстве.

Кривые и поверхности. Как известно, существуют два наиболее общих метода представления кривых и поверхностей. Это неявные уравнения и параметрические функции.

Неявное уравнение кривой лежащей в плоскости xy имеет вид:

Это уравнение описывает неявное отношение между координатами x и y точек лежащих на кривой. Для данной кривой уравнение уникально. Например, окружность с единичным радиусом и центром в начале координат, описывается уравнением

В параметрической форме, каждая из координат точки кривой представляется отдельно как явная функция параметра:

Векторная функция от параметра u .

Хотя интервал произвольный, он обычно нормализуется до. Первый квадрант окружности описывается параметрическими функциями:

Установим, получим другое представление:

Таким образом, представление кривой в параметрическом виде не уникально.

Поверхность также может быть представлена неявным уравнением в форме:

Параметрическое представление (не уникальное) дается как:

Заметим, что для описания поверхности необходимы два параметра. Прямоугольную область существования всей совокупности точек (u,v), ограниченную условиями и будем называть областью или плоскостью параметров. Каждой точке в области параметров будет соответствовать точка на поверхности в модельном пространстве.

Рис. 2. Параметрическое задание поверхности.

Зафиксировав u и изменяя v , получаем поперечные линии, зафиксировав v и изменяя u , получаем продольные линии. Такие линии называют изопараметрическими.

Для представления кривых и поверхностей внутри B-Rep модели наиболее удобна параметрическая форма.

Топологические объекты. Тело (Body) - это ограниченный объем V в трехмерном пространстве. Тело будет корректным в том случае, если этот объем замкнутый и конечный. Тело может состоять из нескольких, не касающихся друг друга кусочков (Lumps), доступ к которым необходимо обеспечить как к единому целому. На рисунке изображен пример тела состоящего из более чем одного кусочка.

Рис. 3. Четыре кусочка в одном теле

Кусочек (Lump) - это единая область в трехмерном пространстве, ограниченная одной или более оболочками (Shells). Lump может иметь неограниченное количество пустот. Таким образом, одна оболочка кусочка является внешней, остальные внутренними.

Рис. 4. Тело, состоящее из двух кусочков

Оболочка (Shell) - это множество ограниченных поверхностей (Faces), объединенных между собой посредством общих вершин (Vertexes) и ребер (Edges). Нормали к поверхностям оболочки должны быть направлены от зоны существования тела. Ограниченная поверхность (Face) - это участок обычной геометрической поверхности, ограниченный одной или несколькими замкнутыми последовательностями кривых - петлями (Loops). При этом петля может задаваться кривыми, как в модельном, так и в параметрическом пространстве поверхности. Ограниченная поверхность в своей сути является двухмерным аналогом тела. Она также может иметь одну внешнюю и множество внутренних зон ограничений.


Рис. 5. Ограниченная поверхность

Петля (Loop) - является участком зоны ограничения Face. Она представляет собой множество параметрических ребер объединенных в двухсвязную цепочку. Для корректного тела она должна быть замкнутой.

Параметрическое ребро (Coedge) - это запись, соответствующая участку петли. Оно соответствует ребру геометрической модели. Параметрическое ребро имеет ссылку на двухмерную геометрическую кривую, соответствующую участку зоны ограничения в параметрическом пространстве. Параметрическое ребро ориентировано в петле таким образом, что если смотреть вдоль ребра по его направлению, то зона существования поверхности будет находиться слева от него. Таким образом, внешняя петля всегда направлена против часовой стрелки, а внутренние по часовой.

Параметрическое ребро (Coedge) может иметь ссылку на партнера, на такой же Coedge, лежащий в другой петле, но соответствующий тому же пространственному ребру. Поскольку в корректном теле, каждое ребро касается строго двух поверхностей, поэтому оно будет иметь строго два параметрических ребра.


Рис. 6. Ребра, параметрические ребра и вершины

Ребро (Edge) - топологический элемент, имеющий ссылку на трехмерную геометрическую кривую. Ребро ограничено с обеих сторон вершинами.

Вершина (Vertex) - топологический элемент, имеющий ссылку на геометрическую точку (Point). Вершина -это граница ребра. Все другие ребра, которые приходят в конкретную вершину, могут быть найдены через указатели параметрических ребер.

Рис. 7. Объектная реализация геометрической модели

В данной диаграмме фигурируют еще два неописанных объекта.

Система координат тела (Transform). Как известно система координат может задаваться матрицей преобразований. Размерность матрицы. Если координаты точки представить в виде вектора-строки, в последнем столбце которого лежит единица, то умножив этот вектор на матрицу преобразований получим координаты точки в новой системе координат.

Матрица может отражать в себе все пространственные преобразования, такие как: поворот, перенос, симметрия, масштабирование и их композиции. Как правило, матрица имеет следующий вид.

Габаритные размеры (Box) - структура данных, описывающая параметры прямоугольного параллелепипеда со сторонами параллельными координатным осям. Фактически это координаты двух точек, расположенных на концах главной диагонали параллелепипеда.

Кривые и поверхности NURBS

В настоящее время наиболее распространенным способом представления кривых и поверхностей в параметрической форме являются рациональные сплайны или NURBS (non-uniform rational b-spline). В виде NURBS с абсолютной точностью могут быть представлены такие канонические формы как отрезок, дуга окружности, эллипс, плоскость, сфера, цилиндр, тор и другие, что позволяет говорить об универсальности данного формата, и исключает необходимость использования иных способов представления.

Кривая в таком виде описывается следующей формулой:

W(i) - весовые коэффициенты (положительные действительные числа),

P(i) - контрольные точки,

Bi - B-сплайновые функции

В-сплайновые функции степени М полностью определяются множеством узлов. Пусть N=K-M+1, то множество узлов представляет собой последовательность не уменьшающихся действительных чисел:

T(-M),…,T(0),…,T(N),…T(N+M).

Рис. 8. (a) кубические базисные функции; (b) кубическая кривая, использующая базисные функции с (a)

Сегмент кривой, представленной в виде NURBS, может быть преобразован в полиномиальную форму без потери точности, то есть представлен выражениями:

где и являются полиномами степени кривой. Способы преобразования кривых из NURBS в полиномиальную форму и обратно подробно описаны в /1/.

Поверхности NURBS представляются аналогичным образом:

Рис. 9. В-сплайновая поверхность: (a) сетка контрольных точек; (b) поверхность

Как видно из рисунков, сложность геометрической формы кривой или поверхности можно оценить по контрольным точкам.

Сегмент поверхности NURBS также может быть представлен в полиномиальной форме:

где и являются полиномами двух переменных и могут быть представлены в виде:


Более подробно свойства NURBS кривых и поверхностей описаны в /1,2/.

Для любой двумерной параметрической кривой, где, и - полиномы существует уравнение, где также полином, которое точно определяет ту же самую кривую. Для любой параметрической поверхности заданной выражением (6) существует уравнение, где также полином, которое точно определяет ту же самую поверхность. Способы получения неявной формы параметрически заданной кривой или поверхности описаны в /33/.

Стандарты передачи геометрической модели

Для сквозной автоматизации процесса подготовки производства, необходимо использование CAD-систем в конструкторских отделах и CAM-систем в технологических. В случае если проектирование ведется на одном предприятии, а изготовление на другом, возможны варианты использования различного программного обеспечения. При этом основной проблемой является несовместимость форматов геометрической модели систем разных фирм. Наиболее часто для решения этой проблемы проектировщик формирует весь набор технической документации в бумажном виде, а изготовитель по полученным чертежам восстанавливает электронную модель изделия. Такой подход очень трудоемкий и сводит на нет все достоинства автоматизации отдельных этапов. Решение подобных задач производится либо посредством программы-конвертора, либо посредством приведения данных к единому стандарту.

Одним из таких стандартов является IGES (Initial Graphics Exchange Specification). Этот стандарт обеспечивает передачу любой геометрической информации, включая аналитические и NURBS поверхности и твердотельные модели в представлении B-Rep. В настоящее время стандарт IGES является общепризнанным и обеспечивает передачу любой геометрической информации. Его поддерживают все наиболее развитые системы автоматизированного проектирования и производства. Тем не менее для решения некоторых производственных задач передачи только геометрической информации недостаточно. Необходимо хранение всей информации об изделии в течение всего его жизненного цикла. Передача подобной информации может быть осуществлена с помощью совсем нового стандарта ISO 10303 STEP, являющегося непосредственным развитием IGES. Однако в России спрос на системы, совместимые со STEP, практически отсутствует. Геометрическая модель может быть передана также и формате STL (формат для стереолитографии). В таком представлении модель представляется как совокупность плоских треугольных граней. Однако представление модели в таком виде, несмотря на очевидную простоту, имеет серьезный недостаток связанный с большим увеличением объема памяти требуемой для хранения модели при небольшом увеличении точности.

Помимо указанных существуют корпоративные форматы хранения и передачи информации о геометрической форме изделия. К ним относятся, например, формат XT ядра Parasolid фирмы Unigraphics Solitions или формат SAT ядра ACIS фирмы Spatial Technology. Ключевым недостатком этих форматов является их ориентированность на продвигающую их фирму, и соответственно, зависимость от нее.

Таким образом, в настоящее время наиболее приемлемым форматом для передачи геометрической информации о форме изделия из одной системы в другую является IGES.

Геометрические модели классифицируют на предметные, расчетные и познавательные. Среди геометрических моделей можно выделить плоские и объемные модели. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. К предметным моделям относятся чертежи, карты, фотографии, макеты, телевизионные изображения и т.п. Предметные модели тесно связаны с визуальным наблюдением. Среди предметных геометрических моделей можно выделить плоские и объемные модели. Предметные модели существенно различаются по способу исполнения: чертежи, рисунки, картины, фотографии, киноленты, рентгенограммы, макеты, модели, скульптуры и т.п. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают на подлинники, оригиналы и копии.



Графические построения могут служить для получения численных решений различных задач. Графически можно выполнять алгебраические действия (складывать, вычитать, умножать, делить), дифференцировать, интегрировать и решать уравнения. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм аналитические методы. Номография – переход от аналитической машины к геометрической машине.

К познавательным моделям относятся графики функций, диаграммы и графы. Графическая модель зависимости одних переменных величин от других называется графиком функций. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой. Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п.

Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео- и фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики.

Особенно интересным является использование геометрических моделей для проведения аналогий между геометрическими законами и реальными объектами для анализа сущности явления и оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма. Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.Проекционные геометрические модели, получаемые в результате операции проецирования, могут быть совершенными, несовершенными (различной степени несовершенства) и распавшимися. С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования.

    геометрическая модель - геометрическая модель; отрасл. макет Модель, находящаяся в отношении геометрического подобия к моделируемому объекту … Политехнический терминологический толковый словарь

    геометрическая модель - Нрк макет Модель, находящаяся в отношении геометрического подобия к моделируемому объекту. [Сборник рекомендуемых терминов. Выпуск 88. Основы теории подобия и моделирования. Академия наук СССР. Комитет научно технической терминологии. 1973 г.]… …

    Геометрическая модель местности - (фототопография) совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков... Источник: ГОСТ Р 52369 2005. Фототопография. Термины и определения (утв. Приказом… … Официальная терминология

    геометрическая модель местности (фототопография) - Совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков. [ГОСТ Р 52369 2005] Тематики фототопография Обобщающие термины виды топографических фотоснимков и их… … Справочник технического переводчика

    геометрическая модель местности - 37 геометрическая модель местности (фототопография): Совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков. Источник: ГОСТ Р 52369 2005: Фототопография. Термины и… …

    электронная геометрическая модель (геометрическая модель) - электронная геометрическая модель (геометрическая модель): Электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров. [ГОСТ 2.052 2006, статья 3.1.2] Источник … Словарь-справочник терминов нормативно-технической документации

    Электронная геометрическая модель изделия - Электронная геометрическая модель (геометрическая модель): электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ.… … Официальная терминология

    Абстрактное или вещественное отображение объектов или процессов, адекватное исследуемым объектам (процессам) в отношении некоторых заданных критериев. Напр., математическая модель слоенакопления (абстрактная модель процесса), блок диаграмма… … Геологическая энциклопедия

    Модель изделия каркасная - Каркасная модель: трехмерная электронная геометрическая модель, представленная пространственной композицией точек, отрезков и кривых, определяющих в пространстве форму изделия... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. ЭЛЕКТРОННАЯ… … Официальная терминология

    Модель изделия поверхностная - Поверхностная модель: трехмерная электронная геометрическая модель, представленная множеством ограниченных поверхностей, определяющих в пространстве форму изделия... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. ЭЛЕКТРОННАЯ МОДЕЛЬ… … Официальная терминология

    Модель изделия твердотельная - Твердотельная модель: трехмерная электронная геометрическая модель, представляющая форму изделия как результат композиции заданного множества геометрических элементов с применением операций булевой алгебры к этим геометрическим элементам...… … Официальная терминология

Книги

  • Адаптивная норма человека. Симметрия и волновой порядок электрофизиологических процессов , Н. В. Дмитриева. В настоящей работе дан новый подход к определению адаптивной нормы человека на основе обобщения опыта работы полипараметрических когнитивных моделей разных физиологических процессов…
  • Теория реальной относительности , Е. А. Губарев. В первой части книги на основе пространства событий четырехмерных ориентируемых точек описана относительность неинерциальных (ускоренных и вращающихся) систем отсчета, связанных с реальными…